Revista de Ciencias de la Salud

  • ISSN: 1108-7366
  • Índice h de la revista: 51
  • Puntuación de cita de revista: 10.69
  • Factor de impacto de la revista: 9.13
Indexado en
  • Genamics JournalSeek
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • CiteFactor
  • CINAHL Completa
  • cimago
  • Biblioteca de revistas electrónicas
  • Directorio de indexación de revistas de investigación (DRJI)
  • EMCare
  • OCLC-WorldCat
  • Comisión de Becas Universitarias
  • Fundación de Ginebra para la Educación e Investigación Médica
  • pub europeo
  • Google Académico
  • SHERPA ROMEO
  • Laboratorios secretos de motores de búsqueda
Comparte esta página

Abstracto

AI-Driven Diagnostic Tools in Oncology Transforming Cancer Detection and Management

Cecily O'Sullivan*

Artificial intelligence (AI) is revolutionizing the field of oncology by enhancing diagnostic accuracy and enabling personalized treatment strategies. AI-driven diagnostic tools, which utilize machine learning and deep learning algorithms, are being integrated into clinical workflows to analyze complex datasets, including imaging, genomics, and electronic health records. This article reviews the current landscape of AI-driven diagnostic tools in oncology, highlighting their applications, benefits, challenges, and future prospects. By improving early detection and treatment personalization, these tools hold the potential to significantly enhance patient outcomes in cancer care.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado