Revista de Neurología y Neurociencia

  • ISSN: 2171-6625
  • Índice h de la revista: 17
  • Puntuación de cita de revista: 4.43
  • Factor de impacto de la revista: 3.38
Indexado en
  • Abrir puerta J
  • Genamics JournalSeek
  • El Factor de Impacto Global (GIF)
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • Directorio de indexación de revistas de investigación (DRJI)
  • OCLC-WorldCat
  • Convocatoria de búsqueda
  • Factor de impacto de revista científica (SJIF)
  • pub europeo
  • Google Académico
  • Laboratorios secretos de motores de búsqueda
Comparte esta página

Abstracto

Speech Emotion Quantification with Chaos-Based Modified Visibility Graph- Possible Precursor of Suicidal Tendency

Susmita Bhaduri, Agniswar Chakraborty and Dipak Ghosh

Nowadays depression is a well-known cause of various mental health impairments, impacting the quality of our personal and social lives. Severe depression leads to suicidal tendency, particularly in young people. Detection and assessment of depression and suicidal tendency is a difficult task, due to their complex clinical attributes. Their key symptoms include transformed emotions which are eventually reflected in speech. Hence emotion detection from speech signals is an important field of research in the area of Human Computer Interaction (HCI). In this work we have attempted to extract a novel feature from the nonlinear and non-stationary aspects of the speech signals generated out of different emotions. We have introduced a modified version of the Visibility Graph analysis technique for the analysis of speech signals and extraction of a quantitative feature named mPSVG (Modified Power of Scale-freeness of Visibility Graph). This parameter efficiently classifies the contrasting emotions of anger and sadness, and we have proposed to use this parameter as a precursor for assessing suicidal tendency. This method of Modified Visibility Graph analysis is computationally efficient and suitable for realtime applications but still retains the nonlinear and nonstationary aspects of the speech signal. This is a constructive step towards the assessment of suicidal tendency and other cognitive disorders, using a nonlinear and non-stationary analysis of speech.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado