Revista internacional de desarrollo e investigación de fármacos

  • ISSN: 0975-9344
  • Índice h de la revista: 44
  • Puntuación de cita de revista: 59.93
  • Factor de impacto de la revista: 48.80
Indexado en
  • Genamics JournalSeek
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • CiteFactor
  • cimago
  • Directorio de indexación de revistas de investigación (DRJI)
  • OCLC-WorldCat
  • Publón
  • miar
  • Comisión de Becas Universitarias
  • pub europeo
  • Google Académico
  • SHERPA ROMEO
  • Laboratorios secretos de motores de búsqueda
  • Puerta de la investigación
Comparte esta página

Abstracto

Process Variable Studies for the Preparation of Optimized Drug Delivery System Using Central Composite Design

Vijay Sharma1*, Ashish Singh Chauhan2, Arvind Raghav3

This research work aimed to study process variable studies for the tasteless drug resin complex of Propranolol hydrochloride and Kyron-T 314. The effect of different parameters such as swelling time, stirring time, pH, Temperature, drug resin ratio, as well as resin activation, was optimized by taste and percentage of drug loading. The formulation DRC (Drug Resin Complex) was characterized by Infrared Spectroscopy. Differential Scanning Colorimetry, and X-ray Diffraction Pattern. Tablets were formulated by the Direct Compression method with Hydroxypropyl methylcellulose (HPMC) as a binder. Sodium Starch Glycolate (SSG) and Kyron-T 314 as a super disintegration, In these batches, optimum hardness was achieved but disintegration time was found to be 30 Seconds, so further trials were planned by using different super disintegrants such as Sodium starch glycolate and Kyron-T 314 by direct compression method. Tablets formulated with 10% Kyron-T 314 showed comparatively low disintegration time (30 Sec), wetting time (26 Sec), and Friability (0.7%) than the other batches. In the present study, we optimized the conditions require for maximum drug loading of Propranolol hydrochloride and Kyron-T 314. Among different super disintegrants, Kyron-T 314 was found suitable with the Drug resin complex to get the low disintegration time, wetting time, and friability of tablets. Hence, optimized DRC batches were formulated by proper balancing of the concentration of independent variables to attain desired dependent response using 32 CCD. Thus, 32 CCD is an efficient tool in optimization experiments.

Keywords

Ion exchange resin; Central composite design; Drug resin complex; Propranolol hydrochloride; Kyron T-314

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado