Revista de Ciencias Biomédicas

  • ISSN: 2254-609X
  • Índice h de la revista: 15
  • Puntuación de cita de revista: 5.60
  • Factor de impacto de la revista: 4.85
Indexado en
  • Genamics JournalSeek
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • Directorio de indexación de revistas de investigación (DRJI)
  • OCLC-WorldCat
  • Google Académico
  • SHERPA ROMEO
  • Laboratorios secretos de motores de búsqueda
Comparte esta página

Abstracto

Maternal Exposure to Nano Titanium Dioxide Induces Neurotoxic Effects in Offspring Mice

Fashui Hong, Yingjun Zhou, Jianhui Ji and Ling Wang

Although nano-TiO2 has been extensively used in food industrial application, and in daily products for infants and children, its potential neurotoxicity presents a significant concern. As previous studies have demonstrated the neurological effects of nano-TiO2 in mice, the main objective of the current investigation was to establish the effects of prenatal exposure of nano-TiO2 on developing embryos and offspring. ICR female mice were orally administered (1, 2, and 3 mg/kg body weight) nano-TiO2 from prenatal day 2 to postnatal day 21. Morphological changes, learning and memory, and potential target molecules of neurodevelopmental toxicity in offspring mice of nano-TiO2-exposed mothers were examined. The results showed that nano-TiO2 could translocate from prenatally exposed maternal to offspring hippocampi, resulting in hippocampal damage including: a 29.07%-61.4% reduction in spatial recognition; a 22.55% -61.34% reduction in total dendritic length; a 53.57%-71.42% reduction in dendritic branch number; and a 27.72%-75.74% reduction in spine density in offspring CA1 pyramidal cells. Furthermore, expression of several proteins involved in dendritic development was decreased including: a 47.62%-73.81% in microtubule-associated proteins; a 14.58%-54.17% in mitotic kinesin-like protein 1; a 1.14%-31.82% in collapsin response mediator protein 3; a 65.17%-79.05% in neuregulin tyrosine kinase receptor 4; a 1.13%-76.92% in kinesin superfamily protein 17; and a 25.73%-61.4% in post synaptic density protein -95 in offspring hippocampi. Hippocampal neurons may present a major target of neurotoxicity in offspring following maternal exposure to nano-TiO2 during the prenatal period. Therefore, food application of nano-TiO2 should be performed with caution.

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado