Revista internacional de desarrollo e investigación de fármacos

  • ISSN: 0975-9344
  • Índice h de la revista: 44
  • Puntuación de cita de revista: 59.93
  • Factor de impacto de la revista: 48.80
Indexado en
  • Genamics JournalSeek
  • Infraestructura Nacional de Conocimiento de China (CNKI)
  • CiteFactor
  • cimago
  • Directorio de indexación de revistas de investigación (DRJI)
  • OCLC-WorldCat
  • Publón
  • miar
  • Comisión de Becas Universitarias
  • pub europeo
  • Google Académico
  • SHERPA ROMEO
  • Laboratorios secretos de motores de búsqueda
  • Puerta de la investigación
Comparte esta página

Abstracto

Extraction of Drug-Drug Interactions Using Convolutional Neural Networks

Puneet Souda*

Drug-drug interaction (DDI) extraction has long been a popular relation extraction task in natural language processing (NLP). Modern support vector machines (SVM) with a high number of manually set features are the foundation of most DDI extraction methods. Convolutional neural networks (CNN), a reliable machine learning technique that nearly never requires manually generated features, have recently shown significant promise for a variety of NLP tasks. CNN should be used for DDI extraction, which has never been looked at. A CNN-based technique for DDI extraction was put forth. CNN is a good option for DDI extraction, as shown by experiments done on the 2013 DDI Extraction challenge corpus. The CNN-based DDI extraction approach outperforms the currently highest performing method by 69.75%, achieving a score of 69.75%.

Keywords

Drug-drug interaction (DDI); Convolutional neural networks (CNN); Support vector machines (SVM); Extraction

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado